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NONLINEAR FILTERS IN FEEDBACK CONTROL5

L
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Abstract

The possibility of aligning the dual goals of an optimal stochastic controller is
discussed. It is suggested that when the measurement function is chosen so that
these two dual goals are aligned an artificial separation wilt occur. This will
occur since the action taken to follow a trajectory will also lead to the best pos-
sible use of the control for estimation purposes. A simple set of examples de-
scribing the nature of such alignment and cases of nonalignment is given.

1. INTRODUCTION The desired trajectory is usually specified in

terms of a cost functional. One measure of the
,Inherent in the problem of stabilization and con-

cost of a trajectory is its deviation from the de-
‘trot of most dynamic systems, is the problem of

sired trajectory. This cost is added to a cost forprocessing noise contaminated measurement data
- . the Control action required to traverse the trajec-to obtain accurate information about the state of

. . tory. The “optimal t trajectory is the one whichthe generally nonlinear stochastic system. If the
minimizes the combined cost found by adding these

‘state can be accurately estimated, then classical

deterministic control techniques , or an approxi - two.

mate linearized quadratic gaussian approach, can 2. TWO GOALS

‘often be used to give adequate system perfor-
• If there are no uncertain system parameters, and
mance. The classical deterministic controller is . .

(1 2) no noise driving the dynamic system or corrupting
often of the form of a feedback control scheme. the measurements, then, the optimal feedback con-

• A. pointed out by Feldbaum, (3) the optimal ito- trol at time tk is a function of the state at time t
K •

chastic controller for nonlinear stochastic sys-

tem. can often be thought of as having two (possi- !L(tk ) = ,(
~~. t~ ) O~~ t £ T (1)

bly conflicting) goals. The f i rs t  goal is to drive

the “true” state of the system over or near a de- I
sired trajectory in state space. The second goal ~~ (x~) k r 1, 2, .. . N (2)

is to obtain the most accurate information about

th, value of the “true ” state . 
The cost is a functional of the control policy

. 
U l~~

U2 D~~~ • U le . . — —- -~~~~ •
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hould be dr~ven tn a direction different from the

one which would be optimal if there were no noise

U1(z1), U2(x2
), ... UN(x.,~

)l contaminating the measurements or driving the

system.
and the optimal control policy is the set of func-

• tions U 1
( ), U 2( ) , . . . U~~( ) which minimize the Note that a certainty equivalence control policy, by

cost, its very nature, neglects this second “dual” goal of

the optimal stochastic control policy. By definition
However if there are uncertain system parame-

• the control function used in the certainty equiva-
tsr., noise driving the dynamic system and/or

lence policy, 
~~~ 

), is the optimal policy for the
noise contaminating the measurements, the “true ”

‘ determiniStic control problem obtained by replac-
• system state is a random variable as is the cost.

It is geueral~y impossible to Irnow its present val- 
ing all of the noise terms and unknown parameters

ue or to prec4ct its future value with certainty, 
by the m~~n values. The certainty equivalence

Our knowledg~e of the state of the system at the 
control policy [U CE

(k), k = 1, N] thus spends all of

present time ~s obtained by filtering the measure- 
its energy in trying to satisf y the first  goal , keep-

ment data in 4rder to obtain the best possible es- 
ing the state on the desired trajectory with a mini-

timate for state at time k based on all data up to 
mum of control energy. This is done ignoring the

time tk~ ~~k/Q 
uncertainty in the knowledge of the true value of the

system state and at the expense of the second goal

• It should be clear that more accurate estimates of of learning more about the true value of the state .

the present state , and prediction of the future Since the knowledge gained by “probing” the system

state of the system, will allow bette r control of could enhance the accuracy of the state estimate
that state. In general the control policy can affect
- 

and thus allow more accurate control , it could
• the accuracy of the estimates and predictions. greatly aid in minimizing the overall control cost.

This use of the control policy to improve state es- This discussion should point out why the certainty

timation and prediction is the second “dual” goal equivalence policy is generally euboptimal.

of the control policy. -

• 3. CAUTION AND PROBING
A cont rol policy that has seen much use is simply

the use of the best estimate for the system state In an interesting series of papers by Bar-Shalom

• in place of the “true ” but unavailable state in a de- and Tse~
4’ 5, 6, 7) there are discussions of the na-

terministi c control policy. This policy is called ture of optimal stochastic control polities and cer-

• the certainty equivalence policy. In terms of the tate approximations to such policies. They note

policy shown in Eq. (2), the certainty equivalence (similar to Feldbaum) that in stochastic control

policy would be written
• - 

systems the optimal stochastic control can have

• two effects. First it can “probe” the system in or-
• U CE

(k) = 
~ k~~k/k~~ der to “look into the future ” and make the most use

However , sInce , as pointed out above , the control of present information about what might be learned

policy in general affects the quality of the esti- from later measurements. To calculate such a

mate for the system state , it Is possible that in policy in a feedback sense will require consider-

order to observe the system better , the control able mathematical analysis. The second effect 

_ _ _ _ . _ _ _ _ _ _ • __ •_ _ • _ _ _ _ • _~~~~_,_ • . . • 
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they point out is the need for “caution”. The 
- - 

‘~~~~~~~~~~~~i~~~ 
- - u 1(k)

Ii “caution” term enters by an apparent increase in I ~~~~ ~ CE
the cost of control thereby reducing the amount of I _A~1~E~T
control effort that can be used in the optimal sys. r U 2(k) 13

2
(k)

-tern. Both of these effects arise from a detailed

study of the structure of the dynamic programing 
~ EST

- - -approach (the Principle of Optimality ) and both A 
- 

B

effects are due to the second “dual” effect.

• U1
(k) U2

(k)

4. TWO GOALS, TWO CONTROL VECTORS !L~sT ~~~ !CE 

f /~,~!CE
-Here a much simpler look at the problem is dis- 

______________

~~~ 

(k) V ’
~ U2(k)‘cussed in a simple tutorial manner. It is hoped 2

that thi, discussion will lead to additional insight

‘on the part of the reader. 
• C D

In any given realization , and at any specified time Figure 1
step k, the control required to satisfy either of

the two “dual” goals in an optimal manner could

be plotted in appropriate control space. The con - calculation of the deterministic certainty equiva-
trol needed for the first  goal (follow the desired lence control (Ucz )* The “estin~~tion optimal”
trajectory Ignoring probabilistic considerations) and control ‘REST should, perhaps , also be reduced to
the second (obtain the most accurate possible esti- account for a finite cost for control.

mate of the system state) need not be conflicting. . . . .It is enlightening, in certain cases , to think of the
On the other hand, they could very well be con- • -optimal stochastic control at stage k in terms of
flicting . in a dynamical system these two control

these two control vectors. For exampl e . if the
effects could well be in agreement at one stage . .- control is incapable of affecting the estimation ac-

F and in opposition at the next. ,curacy, there is no estimation optimal control
The possibilities are indicated in Figure 1 for a and U

EST should not appear on the diagram or
.ingle time k. These figures show the possible should be given zero weight. It is just in this case
relationship between the control which would be that the “separation theorem” can be derived and
used, ignoring the ability of the control to affect the certainty equiva lence control is found to be the
the estimation accuracy (U

CE
), and the control optimal stochastic control. (8 ,9, 10)

chosen to give the best , minimum variance, esti-- At another extreme, one might envision the case
mate without regard to the desired trajectory
- where the control could affect the estimat ion ac-
(U ) at time k. 

•EST curacy, but could not affect the basic deterministic
In addition to U

CE and UEST there could be a zero cost function itself. In this case , there would be
vector on each figure which would represent the no reason to improve the estimation accuracy and
correct control vector to use to get minimum con- the optimal control policy would be to use no con-
trol effort. The cost of control represented by trol effort. This latter case shows that th . second
this last zero vector Is already included in the “dual effect” is secondar y to the first. - - -

1’ 
—

--- . -
~~~~~~~~~~~~~ I
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It should be noted from Figure 1A that the con- ered later In the trajectory in order to keep the

tr ots required for each of the dual effects do not system on the correct path.

necessarily have to be different. Thu s, in Figure From the above discussion it can be seen that these
IA one would use control vectors pointing in the are only two cases where the “optimal stochastic
same direction for both effects. if t ie  length of control law” can easily be obtained. The first is
the two vectors is the same at each stage, the when the control cannot affect the estimation accu-
control policy giving the “best estimation” (U

EST
) racy and the generally used certainty equivalence

would be the same as the one ignoring prob*blistic control law is optimal . The second case would be

4 effects (U CE ). If UEST 
is considerabl y shorter one where UEST is coincident with UCE at each

-tha n UCE, the optimal control could oe expected t g  In this case , U CE 
would again be the opti-

to exhibit some “caution”. 
(5) 

Or. the other hand, mal control policy. Even if the two controls are• — I
if the two control vectors were parallel as in Fig- only colinear and approximately the same length.
ure IC but UCE was shorter than UEST~ 

the opti - we would expect U CE 
to drive the state vector in

-mal control would be expected to be stronger than such a way that the measurements could be used to
that demanded by U

CE. This could be thought of adequately estimate the state. Such estimates
as additional “probing”. in an extreme case of might involve the use of fairl y complex nonlinear
“caution” U CE and UEST are actually in opposite filters but there would be no need to consider the
directions (Figure 1B). In such a case, the con- dual effect explicitl y.
trol used for one goal might be the worst thing you

Here we suggest that the choice of the measure-
could do for the other. A detailed study of t~ie dy-

rnent device or measurement function can lead to
narnics and stagewise progression of the system

the aligning of these two vectors in Figure 1. This
would be required, to obtain even an approxima-

aligning of the two goals will lead to what we define
lion of the true “optimal stochastic control”. rath-

as a “natural probing ” of the system. The design-
er than considerations of the tradeoff of these two

er should choose his measurement structure so‘control. at each stage. This is because the con-
that it will estimate the state in the best man ner

,flict might appear to demand no action at any giv.
F S possible when the control system is driving the sys-

en stag. but considerations of the effect of the tot-
tern to desired trajectory. Then the dual goal sat control policy might indicate that effort should
will be naturally satisfied without explicit consid-

be expended immediately to observe the system
eration of the effect of the control on the estimation

so that it could be controlled more accurately at
accuracy. This effect is discussed in terms of a

later stag. .. 
simple set of examples below.

The possibility of UEST 
being orthogonal to

1. indicated in Figure IC . While at a single stage , 5. SIMPLE EXAMPLES

a control which was the vector sum of the two
Consider the simple scalar stochastic dynamic4 might make sense , the continued use of such a
control syste m

• combination (If the orthogonality persisted) could

drive the system far from the desired trajectory. + U~ + Wk k , 0, 1 , ... N (5)
nfl‘Thu., while the orthogonal “probing ” required by

would af fect the optimal control policy, any where the scalar control is to be chosen in order

“probing” actually used would have to be consid- to minimise the expected value of the random co.t
I.—- - . .  - - - - - - - - -
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functional C. when written as an equivalent open loop policy.

4 • 
- The calculation of the A.5 is well documented in the

.1 z E{C[U~ . U 1
( ), ... U1( )J} (6) 

literature. 
(8) 

-

• Nfl 2 2 In Case 1 and Case 2 the optimal stochastic cvmtrol
C 

~~~ 
(a~x,~ + b3_ 1U3, 1 (7) 

policy can be explicitly calculated, in Ca~ e l i t  is

given by
The noise driving the dynamics is taken to be a

:~ 
white, zero-mean stochastic process with covari- Uk

’ a _~yq,k~ +~~~~
1u0 + ... Uk_ i )

ance matrix 
~ k’ The stochastic process W

k 
is

- ‘- . .  . . and in Case 2 the optimal stochastic control policyindependent of the a priori state x
0 which is a ran -

. . A . is given as- - 
- - 

-dom variabl e with mean x0 and covariance P0.

The relationship between the controls required to U
k
2 

= _A
k~~~/k

satisf y the dual goals at each stage changes with
Here L is the best linear estimate of the statethe choice of measurement function . Consider n/k
x. conditioned on all the measurement dat a z • athe following cases, a 1 2

and I s given by the Kalma n filter. In both
- Case l . S -- cases the control policy is the same as the optima l

No measurement information .
deterministic control policy with the state replaced

Case 2
by the best available estimate for state at stage k .

‘k ~ Hkxk + vk These optimal stochastic control policies can be
Case 3 obtained by solving two separate problems , the de-

2 terniinletlc control problem and the state estinia-ak
= }

kxk + v k . . . S
• tion problem. This fact is called the Separation
- Case 4
• Principle. The princi ple results from the fact that

a H~x~ + vkU
k l  the control policy has no effect on the estimation

- accuracy. In this case the second control U in
- - . Case 5 EST

Figure 11.  indeterminant and should be given noSIGN(H k~~ + vk
)

weight.

-In each case v Is taken to be a zero mean whitek Ca.. 3 1.  discussed in references ( 11) and (12 1.
stochastic process with covarianc e R. v is also . Sa k Due to the nature of the cost functi on 1

~~’E w i l l
independent of both w and x . . S Sk 0 always try to drive the state estimate to the origin.
First reme mbe r that if and P0 ar . zero we re- However , due to the nature of the measurement the
duce to the deterministic case and x.~ 

is explicitly signal to noise ratio will be worst at the origin and
ava ilable. In th is case the optimal determ inistic will get better as the state moves from the ori gin.

‘control policy is Thus U 
CE 

will point in the opposite direction
- 

D from UEST
. As shown In referenc e (12 )  using

Z _ A
kxk . -  U~~~ at the first stage can be the worst possible

control to use This Is the situa tion indicate d Inwhen wrltt .n as a feedback control policy or
P igurs iL

~~~ 
_y ,k

~0 +,k_ 1u0 +.
k_ Z U i... + 0k~1~ In Case 4 (discussed In more generality in refer-

V

h • .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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once 13), the use of the control at stage k-i will 6. CONCLUSIONS 
-

reduce the accuracy of the measurement s at stage
p Here it has been suggested that , when dealing withk. Since the best measurements are obtained

when no control is used , UEST is identically zero, dynami c stochastic systems observed by noisy

The optimal control is thus reduced by some measurements, when possible, m e a s u r e m e n t

• amount from U CE . As can be seen from this transducers be selected with an eye to aligning the

and as shown in reference (13), the optimal sto- two dual control goals. This could result in im-

chastic control is again of the form proved control syste m performance without re-

quiring increasing ly complicated control laws.

Uk
4 

a - A5 The aligning of these two goals will lead to an ap-

proximate type of separation principle in that the
but the weighting matrices (A

k
*) are not the same

control chosen for the primary goal will tend to
as in the deterministic case or in Cases 1 and 2.

automatically drive the system to improve the ac-
The control and estimation problem are again

curacy of state estimates.
separated but the control is not the certain ty e-
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